

EFFICIENT LATENCY AND POWER OPTIMIZED MODIFIED

AES CRYPTOGRAPHY SYSTEM

1.MD PARWEZ ALAM, 2.G SARITHA

1. M.Tech, Dept. Of ECE, Nova College of Engineering and Technology, Ibrahimpatnam, A.P

2. Guide, Dept. Of ECE, Nova College of Engineering and Technology, Ibrahimpatnam, A.P

ABSTRACT: This project plays vital role in all type of communication applications. This project designs a novel low-

transition linear feedback shift register (LFSR) that is based on some new observations about the output sequence of a

conventional LFSR. Security of a hardware implementation can be compromised by a random fault or a deliberate

attack. The traditional testing methods are good at detecting random faults, but they do not provide to secure all type

of attacks. It requires a small set of deterministic tests to cover maximum percentage of single stuck-at faults. Thus, the

test execution time is much shorter (at least two orders of magnitude). It has a higher resistance against stuck-at fault

type of hardware Trojans. Further, this project can be extended to decrease power by using scan bit swapping LFSR.

In this algorithm, all test patterns to circuit are generated using low power LFSR and, generated patterns are reordered,

in such a way; power will be decreased while testing application. Latency reduction can be done by using scan chain

reordering. Cell reordering plays vital role in transitions reduction to further improvement of timing constraint.

KEYWORDS: Linear feedback shit register, Advanced Encryption Standards, Scan chain reordering, Trojansns,

stuck-at fault, Hardware optimization.

INTRODUCTION: THE fast development of

Internet-of-Thing (IoT) devices enables the massive

integration of technologies from sensing technology,

communication technology, data processing, to cloud

computing, and artificial intelligence. In this scenario,

sensors in the perception layer collect data from the

environment and do fast processing. Then, these data

are transmitted through the network layers over the

Internet to the cloud. In the cloud, data are further

processed by different applications, for example, big

data applications or data miningapplications to make

decisions and/or to notify users, etc. However, IoT

devices and data transmitted through multilayer

networks may contain private data or secrete data;

while the Internet environment exposes security issues

such as personal privacy, cyber-attacks, and organized

crimes. This recently raises the concerns about the

security and privacy of the IoTs [1]–[3]. The solution

to security and privacy problems is to include security

features such as device identification, device/user

authentication, and data encryption. These security

functions are often based on the cryptographic

algorithms, including public-key cryptography and

symmetric cryptography, which occupy processing

power and increase power and energy consumption.

In contrast, IoT devices are supposed to be

constrained low-cost devices with limited processing

power, limited memory footprint, and even limited

power/energy budget, for example, power-harvesting

devices and batterybased devices. This leads to the

importance of optimizing cryptographic algorithms in

hardware for cost, throughput, and especially power

and energy consumption. However, cost, throughput,

and power/energy consumption are different features

which are hard to achieve at the same time. In this

paper, we chose to find a good tradeoff among them

for advanced encryption standard (AES) [4], a widely-

used block cipher for emerging IoT proposals, such as

IEEE 802.15.4 [5], LoraWAN [6], Sigfox [7], and

ZWave [8]. We also made comparison with an

extreme lightweight data encryption algorithm

PRESENT [9], a candidate for highly constrained

devices. PRESENT is a hardware-oriented block

cipher with reduced security level but it has small area

footprint and very lowpower consumption. However,

to the best of our knowledge, lightweight block

ciphers, such as PRESENT, are not yet adopted to

any IoT proposals. From its standardization in 2001

by the U.S. National Institute of Standards and

Technology (NIST) to replace data encryption

standard, AES has been studied by researchers in

terms of security, performance, and hardware/software

implementations. In terms of security, different IoT

applications may require different security levels with

different power/energy budgets and different

throughputs. At the algorithmic level, security level

depends on the design of the algorithm and the length

of the key. AES supports multiple security levels by

providing three different key sizes. AES is proven to

support long-term and very long-term security.

Because of its popularity and proved security, AES is

widely used in data encryption, security protocols, and

secure applications. The optimization for AES in

hardware is not only beneficial to IoT applications but

also to other applications, which have the same

constraints. In terms of implementation and

performance, AES is designed to benefit from

software optimization in modern computing systems.

However, AES implementation in software not only

introduces delay to data processing and transmission,

but also increases the power and energy consumption.

This is the main limitation of AES to constrained

devices.

ADVANCED ENCRYPTION STANDARD (AES):-

Federal Information Processing Standards

Publications (FIPS PUBS) are issued by the National

Institute of Standards and Technology (NIST) after

approval by the Secretary of Commerce pursuant to

Section 5131 of the Information Technology

Management Reform Act of 1996 (Public Law 104-

106) and the Computer Security Act of 1987 (Public

Law 100-235).

The Advanced Encryption Standard (AES)

specifies a FIPS-approved cryptographic algorithm that

can be used to protect electronic data. The AES

algorithm is a symmetric block cipher that can encrypt

(encipher) and decrypt (decipher) information.

Encryption converts data to an unintelligible form

called cipher text; decrypting the cipher text converts

the data back into its original form, called plaintext.

The AES algorithm is capable of using cryptographic

keys of 128, 192, and 256 bits to encrypt and decrypt

data in blocks of 128 bits.

This standard specifies the Rijndael

algorithm, a symmetric block cipher that can process

data blocks of 128 bits, using cipher keys with lengths

of 128, 192, and 256 bits.

Rijndael was designed to handle additional

block sizes and key lengths; however they are not

adopted in this standard. Throughout the remainder

of this standard, the algorithm specified here in will be

referred to as “the AES algorithm.” The algorithm

may be used with the three different key lengths

indicated above, and therefore these different

“flavours” may be referred to as “AES-128”, “AES-

192”, and “AES-256”.

This specification includes the following sections:

1. Definitions of terms, acronyms, and algorithm

parameters, symbols, and functions.

2. Notation and conventions used in the algorithm

specification, including the ordering and numbering of

bits, bytes, and words.

3. Mathematical properties that is useful in

understanding the algorithm.

4. Algorithm specification, covering the key expansion,

encryption, and decryption routines.

5. Implementation issues, such as key length support,

keying restrictions, and additional block/key/round

sizes.

The standard concludes with several appendices that

include step-by-step examples for Key. At the start of

the Cipher, the input is copied to the State array using

the conventions. After an initial Round Key addition,

the State array is transformed by implementing a

round function 10, 12, or 14 times (depending on the

key length), with the final round differing slightly from

the first Nr -1 rounds. The final State is then copied to

the output.

The round function is parameterized using a

key schedule that consists of a one-dimensional array

of four-byte words derived using the Key Expansion

routine.

The Cipher is described in the pseudo code. The

individual transformations -

Sub Bytes (), Shift Rows (), Mix Columns (), and

AddRoundKey () – process the State and are

described in the following subsections.

All Nr rounds are identical with the exception of the

final round, which does

Not include the Mix Columns () transformation.

A block cipher processes the data blocks of fixed

size. Usually, the size of a message is larger than the

block size. Hence, the long message is divided into a

series of sequential message blocks, and the cipher

operates on these blocks one at a time.

MODIFIED AES ARCHITECTURE:

Our proposed AES architecture.

To reduce area and power consumption in the

datapath, we minimized the number of flip-flops and

control logics in the datapath by using shift registers

with a special organization. Shift registers help simplify

loading data and loading key steps. The 32-b of both

plaintext and key are loaded at the same time into the

state register and the key register by using shift

operations. By minimizing the number of flip-flops, we

also reduced the number of clock buffers and the

power consumption of the clock tree because clock

buffers in the clock tree consume a large amount of

power. A further optimization is to select S-boxes with

minimal power dissipation. Fig. 3 shows the

organization of our proposed state register. The state

register is organized so that after loading the input data

and the input key, the encryption is done by shifting

the data 32 b in each clock cycle. The state register

consists of sixteen 8-b registers (forming a “state

matrix”) which are further divided into four 4-stage

shift registers. AES standard specifies that ShiftRow is

a permutation operation on the rows of the state

matrix, while MixColum is an operation on the

columns. However, in our design, based on ShiftRow

specification, we completely eliminated ShiftRows by

selecting the diagonal of the state matrix (from lower-

left corner to upper-right corner). The output of the

state register after each shift operation is one column

of the state matrix after ShiftRow. This reduces the

control logics for the state register, and completely

removes the logic for ShiftRow steps. In our datapath,

in contrast with 8-b architectures, MixColum is

designed as pure combinational logics to reduce the

number of flip-flops. Thanks to this structure, the state

register’s contents will be updated by next state data

which are the contents of the output register

concatenated with four last bytes of the round

operation every four cycles (or after each round

finishes) as described in Fig. 4. Consequently, we

saved a 32-b register because we need to store only 3 ×

4-B temporary data from the encryption path in the

output register, while the last 32-b data are written

back directly into the state register. The output register

is a simple 4 × 3-stage shift register to save area and

power.

In between the state register and the output register,

there are four S-boxes followed by the MixColums to

enable processing 4 B in each clock cycle. The

temporary results are stored in the output register.

When the encryption finished, the results are written

out from the output register. In the 128-b key

configuration, AES encryption module needs ten

rounds, which leads to 40 cycles to finish the

encryption for a 128-b block of data. The total

number of cycles to encrypt a block in our

architecture is 44 cycles. For other key configurations,

our architecture needs 52 and 60 cycles to encrypt a

data block for 192- and 256-b key modes, respectively.

Clock gating technique is applied on the state register

and the output register separately to save the dynamic

power consumption. For example, in data loading

state, the clock to the output register is disabled to save

power because there are no valid data to the output

register. Furthermore, when in the inactive state, the

output of these registers is not changed, which means

that there is no activity in the encryption path. The

power estimation results show that even in the highest

throughput mode (44 cycles/encryption for 128-b key

mode) the applied clock gating technique can save

more than 13% of power.

Certainly, with smaller throughput the clock gating

technique can even save much more power

consumption.

SUBSTITUTION BOX:

The S-box has a big impact on area and power

consumption of the AES design. In our architecture,

we chose S-box implementation for the lowest power

consumption. S-boxes may occupy up to 60% of the

total cell area, while they consume about 10%–20% of

the total power consumption. The smallest

implementation of S-boxes until now is from Canright

[18]. Canright S-box demonstrates optimized area

(292 gates/S-box) but needs more power/energy

consumption

because it creates more activities especially in

architectures with eight S-boxes. The most popular

and straightforward S-box implementation is the LUT-

based S-box. LUT-based S-box is bigger in terms of

area (434 gates/S-box) but smaller in power/energy

consumption than Canright S-box. The most efficient

S-box in terms of power consumption is DSE S-box;

however, it occupies a larger area. DSE S-box can be

further optimized for power consumption using the

structure proposed in [20] and described in Fig. 5.

The idea is to use an onehot decoder to convert S-box

inputs into onehot representation. The nonlinear

operations are done by using wire permutation as in

lightweight cryptography algorithms. After that, the S-

box output in onehot encoding is converted back into

theoriginal field. DSE S-Box can reduce the power

consumption because it minimizes the activity inside

the S-box circuit. After decoding state, only one signal

changes its value to go to the encoding state. Most of

the area lost is because of the size of encoder and

decoder circuits. This optimization can leads to 10%

power reduction to the whole design. Our synthesized

DSE S-box has the size of 466 GEs/S-box that is 7%

increase in size in comparison with LUT-based S-Box

or 1.6 times the size of the smallest S-boxes. The S-

boxes in our design consume only 10% of the total

power consumption.

MODIFIED AES S-BOX GENERATION:

Our modified AES S-Box generation process follows

the construction procedure of the original AES. The

whole process differs only in the selection of the

irreducible polynomial and specially designated byte.

1) Multiplicative Inverse Table: In the Rijndael AES,

all the arithmetic operations are performed over the

Galois Field (28). In our work, the Galois Field (24) is

considered. The number of irreducible polynomials of

degree 4 over GF(2) are x4 + x + 1, x4 + x3 + x2 + x +

1 and x4 + x3 + 1. All the generated values of the

multiplicative inverse table and substitution box

depend on the selection of irreducible polynomial.

For our experiment purpose, we choose x4+x+1as our

irreducible polynomial but we can select any of the

irreducible polynomials which are mentioned above.

RESULT:

CONCLUSION:-

Crypto may be seen as a continuous struggle between

cryptographers & cryptanalysts. Attacks on

cryptography have an equally long history. The

security of cryptographic modules for providing a

practical degree of protection against white-box (total

access) attacks should be examined in a totally un-

trusted execution environment.

So many developers design so many devices to protect

the data very powerful when it is done right, but it is

not a panacea. But by using this crypto devices

technique we are providing secure scan architecture

can easily be integrated into the scan-based DFT

design flow as the synthesis register can be specified to

the corresponding bit of the secret key. The secure

control circuit & multiplexers between the MKR &

secret key can be inserted.

In this project a solution is presented that consists in

using an AES-based cryptographic core commonly

embedded in secure system. Three addition modes

are added to the current mission of the AES crypto

core. One for pseudo- random test pattern generation

& one for signature analysis. Efficiency of these three

modes has been demonstrated. Extra cost in terms of

area is very low compared to other techniques.

Because only one AES core will be originally

embedded in the system. This reduces the reduction

of test cost will lead to the reduction of overall

production cost & 100% security of data.

REFERENCES

1. S. Reddy, “Easily testable realizations for

logic functions,” IEEE Transactions on

Computers, vol. 21, no. 11, pp. 1183–1188,

1972.

2. S. Golomb, Shift Register Sequences. Aegean

Park Press, 1982.

3. R. K. Brayton, C. McMullen, G. Hatchel,

and A. Sangiovanni-Vincentelli, Logic

Minimization Algorithms For VLSI

Synthesis. Kluwer Academic Publishers,

1984.

4. E. McCluskey, “Built-in self-test techniques,”

IEEE Design and Test of Computers, v Vol.

2, pp. 21–28, 1985.

5. D. H. Green, “Families of Reed-Muller

canonical forms,” International Journal of

Electronics, vol. 70, pp. 259–280, 1991.

6. M. Abramovici, M. A. Breuer, and A. D.

Friedman, Digital Systems Testing and

Testable Design. Jon Willey and Sons, New

Jersey, 1994

7. H.-J. Wunderlich, “BIST for systems-on-a-

chip,” Integration, the VLSI Journal, vol. 26,

no. 1-2, pp. 55 – 78, 1998.

8. M.G. Kuhn, R.J. Anderson. Soft tempest:

hidden data transmission using

electromagnetic emanations. Information

Hiding 1998,LNCS 1525,pp.124-142,1998.

